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Abstract

This paper develops an argument why retail prices may rise in response to the deregulation
of opening hours. We make this point in a model of imperfect duopolistic competition. In a
deregulated market retailers view the choice of opening hours as a means to increase the degree
of perceived product di.erentiation thus relaxing price competition. If the consumers’ preference
intensity for time is su1ciently high the equilibrium con3guration has asymmetric shopping
hours where one retailer stays open for longer than the other. Both retailers charge higher prices
than under regulation, and both are strictly better o..
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1. Introduction

This paper studies the impact of deregulation of opening hours on price competition
at the retail level. Deregulation refers to a change in the legal prescriptions allowing
retailers to stay open for longer. 3 We start from the observation that the retailers’
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choice of opening hours has an important impact on the consumers’ decision where
to shop. A retailer staying open for longer than its rival attracts additional demand as
some consumers 3nd it more convenient to shop at a time when the rival outlet is
closed. More importantly, as consumers have a preferred shopping time, outlets selling
physically identical products may want to open at di.erent times of the day in order
to relax price competition. Thus, the choice of shopping hours may be viewed as a
means to increase the degree of perceived product di.erentiation in the retail market.
Could deregulation then lead to higher prices?
The existing theoretical literature on the short-term e.ects of a deregulation of shop-

ping hours on prices has developed ambiguous predictions on how prices respond. 4

Clemenz (1990) emphasizes the role of search for equilibrium prices under imperfect
information. Deregulation may lead to overall lower prices as longer shopping hours
facilitate the comparison of prices. In Morrison and Newman (1983) and Tanguay
et al. (1995) prices increase at large stores and fall at small stores. The authors asso-
ciate small stores with low access time and large stores with high access time. A large
store has to charge a lower price in order to attract demand. Deregulation implies a
fall in the value consumers attach to access time such that the large stores’ locational
disadvantage becomes less pronounced. Demand shifts in favor of large stores that
increase their price. At small retailers, prices go down.
These two approaches do not treat opening hours as a strategic variable among com-

petitors. In contrast, our paper tackles the question of how prices respond to deregu-
lation in a framework which endogenizes the choice of opening hours. This links the
e.ect of deregulation on price competition to the question of how retailers’ choice of
opening hours responds to it. Observed price levels after deregulation are then to be
interpreted as part of an equilibrium choice of opening hours.
We study this question in a spatial model of duopolistic retail competition with

“space” and “time” as dimensions of horizontal product di.erentiation. We consider
two established retailers with given spatial locations. Following deregulation these
retailers can choose between three regimes of shopping hours: Daytime, nighttime,
or around the clock. For this setting we derive the following important result: If con-
sumers attach great value to time the equilibrium con1guration exhibits asymmetric
shopping hours. While one retailer uses the additional freedom to open around the
clock, the other retailer is active only during daytime. As we abstract from costs in-
curred when operating longer hours (shift costs), this result is only driven by the
retailers’ incentive to mitigate price competition. An asymmetric choice ensures that
demand is less responsive to price changes. The point of our analysis is that this
logic may be stronger than the intuitive argument according to which an outlet must
lose when its competitor bene3ts from a locational advantage. By considering di.ering
(linear) input costs, we are also able to show that the retailer with a cost advantage is
more likely to open around the clock.
Recent empirical studies show that, indeed, not all outlets use the additional leeway

after deregulation. For Germany, Halk and Tr@ager (1999) compare reported opening

4 We abstract from long-term e.ects of deregulation that are due to exit or entry. On these e.ects, see
e.g., de Meza (1984), Ferris (1990), and Kay and Morris (1987).



R. Inderst, A. Irmen / European Economic Review 49 (2005) 1105–1124 1107

hours in July and August 1998 to those before deregulation became e.ective in Novem-
ber 1996. They 3nd that only 39% of all outlets were open for longer in 1998. This
suggests the presence of asymmetric con3gurations in local markets for which our
model provides a rationale. 5 Moreover, in 1998 larger stores were more likely to stay
open for longer than small retailers who rather maintained their old time schedule. Our
results are consistent with this regularity, too. Interpreting di.ering input costs as re-
Necting shop size the larger outlet is more likely to open longer. However, a surprising
implication of our analysis is that the small outlet nevertheless gains from deregulation.
Our model of two-dimensional product di.erentiation is in the tradition of the pio-

neering work of Economides (1989), Neven and Thisse (1990), and Tabuchi (1994).
From a technical point of view our study extends and complements this literature in
at least two respects. As this class of models has become one of the workhorses of
the industrial economics of multi-dimensional product di.erentiation, we feel that our
analysis and results are of interest beyond our application to shopping hours.
The 3rst and major novelty is a piecewise uniform distribution of consumer pref-

erences with respect to time. This is meant to capture the empirical fact that most
consumers have a preference for daytime shopping. The second novelty concerns the
characterization of a product variant. Whereas the literature on multi-dimensional prod-
uct di.erentiation represents a product as a point in a given characteristics space we
allow retailers to choose their hours of business from a menu of convex time intervals.
Hence, a retailer’s product variant is characterized by a point in geographical space
and an interval in the time space. 6

The remainder of this paper is organized as follows. The model is presented in Sec-
tion 2. Section 3 studies equilibrium shopping hours in the regulated and the deregulated
market. Here, we derive our main result concerning the implications of an asymmet-
ric con3guration of shopping hours for price competition. Section 4 introduces cost
heterogeneity. Section 5 concludes with some tentative remarks on welfare.

2. The model

Consider two dimensions of horizontal product di.erentiation where the 3rst dimen-
sion represents space and the second is time. We may think of the spatial dimension
as “Main Street” and of the time dimension as representing 24 hours of business. This
suggests an intuitive geometry for our characteristic space: A line Oa la Hotelling (1929)
to capture space and a circle in the spirit of Salop (1979) to model time. 7

5 Kosfeld (2002) presents an evolutionary perspective on why only some shops make use of deregulated
opening hours.

6 The choice of time intervals is also at the heart of a study on the usefulness of regulation of shopping
hours by Clemenz (1994). The author deals with the monopoly and competitive cases leaving aside modes of
competition between those benchmarks. Such a framework is not suited to study the link between imperfect
competition in shopping hours and prices which is the focus of the present paper.

7 A similar geometry has previously been used by, e.g., Ben-Akiva et al. (1989) and Degryse (1996).
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There are two retailers i = A,B. Their location determines the product variants in
the market. We denote retailer A’s location by a vector a := (a1; a2) and retailer
B’s location by b := (b1; b2). The vectors’ 3rst component characterizes the respective
retailer’s position in space and the second component its position in time. The retailers’
location in space is exogenously given at a1 =0 and b1 =1, respectively; their location
in time is endogenous.
A circle of circumference 2 represents the time of the day. We denote noon by 0

(and 2), 6 p.m. by 1
2 , midnight by 1, and 6 a.m. by 3

2 . Moreover, we call the arc
stretching from 3

2 to 1
2 the daytime interval, QI , and the arc stretching from 1

2 to 3
2 the

nighttime interval, I.
The decision of retailers when to open is a discrete choice between four options: not

to open at all, to open either during the daytime or the nighttime interval, and to open
during both intervals. Denote the options to stay closed by 0 and to open around the
clock by I = QI ∪ I. Then, the possible locations of both retailers in the time dimension
are a2; b2 ∈ {0; I; QI ; I}.
Extending shopping hours does not lead to higher (operating) costs. This assumption

is made to abstract from such cost issues that are commonly made responsible for our
main e.ects: price increase after deregulation and longer shopping hours particularly at
larger shops. In Section 3, we consider retailers with identical marginal cost per unit
sold. Without loss of generality this cost is normalized to zero. We denote Ri := piDi
the pro3t of retailer i where pi and Di are the respective retailer’s price and demand.
Section 4 introduces di.ering marginal costs.
There is a continuum of consumers. Without loss of generality we normalize total

population to 2. A consumer is characterized by her address z := (z1; z2) indicating her
geographical location z1 ∈ [0; 1] on main street and her most preferred shopping time
z2 ∈ [0; 2] on the circle. Addresses are independently distributed over [0; 1]× [0; 2]. The
distribution is uniform with respect to space and piecewise uniform with respect to time.
The mass 16 2K6 2 is uniformly distributed over the daytime interval QI whereas the
remaining mass 2(1 − K) is uniformly distributed over the nighttime interval I. Thus,
a weak majority prefers daytime shopping.
Consumers have a conditional indirect utility function Vi(z), i = A; B. A consumer

buying at A has utility equal to (a similar expression holds for a consumer purchasing
from retailer B)

VA(z) := S − pA − t1z1 − t2 dist(z2; a2);

where S denotes the gross surplus all consumers enjoy from either variant and pA is
the price charged by retailer A. The parameter t1 has the usual interpretation as the
transport cost per unit of distance to make a return trip to a shop. Given the outlets’
location on main street z1 measures the geographical distance to be covered when
purchasing at A.
The parameter t2 stands for the salience coe1cient associated with the time

dimension. The term dist(z2; a2) measures the closest distance between a consumer
located at z2 and the time interval during which outlet A stays open. Obviously,
this distance is equal to zero when z2 is part of this time interval. Otherwise it
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Fig. 1. The unfolded characteristic space.

is the absolute value of the di.erence between z2 and the closest boundary of this
interval. 8

Consumers have unit demands. Moreover, S is assumed to be large enough to exclude
aggregate demand e.ects. The demand for variant A is then de3ned by the mass of
consumers for whom variant A is weakly preferred to B, i.e., VA(z)¿VB(z).

The combined characteristic space may be viewed as a right cylinder with the unit
segment as its altitude, retailer A located on the lower rim, and retailer B on the up-
per rim. Suppose, we cut open the cylinder at “midnight” and unfold it so that the
morning hours (0 a.m. until noon) appear to the left and the afternoon hours (noon until
12 p.m.) appear to the right. Our assumption that consumers are symmetrically
distributed around noon implies that the characteristic space can be subdivided into
two identical subspaces: [0; 1] × [1; 2] (“competition before noon”) and [0; 1] × [0; 1]
(“competition after noon”). This is illustrated in Fig. 1.
Retailers are constrained to charge a single price, regardless of the shopping time. 9

Given the symmetry before and after noon retailers’ pro3t-maximizing behavior in
one subspace will mimic the behavior in the other. Therefore, we solve the model as
if there was only “competition after noon”. The relevant subspace is the unit square
[0; 1]× [0; 1] with mass 1 of consumers. To 3x ideas, we consider the unit square in a
position such that its horizontal dimension represents space and its vertical dimension
time. Outlet A is located at the left endpoint of main street and B at the right endpoint.
The daytime interval corresponds to [0; 12 ] and contains mass K , the nighttime interval
is [ 12 ; 1] and has mass 1 − K (see Fig. 2).
Retailers choose their opening hours in view of its impact on price competition.

This translates into a two-stage game. At the 3rst stage retailers simultaneously deter-
mine their location in time. After having observed these locations they simultaneously
compete in prices at stage two.

8 In other words, all consumers who decide to buy at A and whose preferred shopping time lies outside
of A’s hours of business buy at the 3rst or the last “minute”. This pattern of behavior is optimal from the
consumers’ point of view given that our setup abstracts from congestion e.ects which could naturally arise
if too many consumers visited an outlet at the same time.

9 High menu costs may justify this assumption.
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Fig. 2. The right square.

3. Equilibrium shopping hours

3.1. The regulated market

Regulation restricts the retailers’ location choice to a2 ∈ {0; QI} and b2 ∈ {0; QI}. The
indi.erent consumer location for which VA(z) = VB(z) satis3es

pA + t1z1 + t2 dist(z2; a2) = pB + t1(1 − z1) + t2 dist(z2; b2): (1)

Consider the con3guration a2 = b2 = QI . Consumers with a preference for daylight
shopping (06 z26 1

2 ) buy at their preferred moment in time and do not incur a
disutility in the time dimension as z2 ∈ QI . Accordingly, (1) becomes pA + t1z1 = pB +
t1(1 − z1) and consumers indi.erent between shopping at A or B are located at

ẑ1(pA; pB) := min
{
1;max

{
0;

1
2
+
pB − pA

2t1

}}
: (2)

Next consider consumers with 1
2 6 z26 1. In order to minimize the disutility incurred

with respect to the time dimension they buy at 6 p.m. and incur a disutility equal to
t2(z2 − 1

2 ) independently of whether they shop at A or B. The latter term cancels out
on both sides of (1) so that we obtain an indi.erent consumer location as in (2).

Hence, demand for A is given by

DA(pA;pB) =




0 if pA − pB¿ t1;

ẑ1 otherwise;

1 if pA − pB¡ (−t1);
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while DB(pA;pB) = 1 − DA(pA;pB). This coincides with the standard one-dimensional
Hotelling model. We thus get the following well-known results. 10

Proposition 1. With regulated shopping hours we obtain equilibrium prices ps
A=p

s
B=t1

and equilibrium pro1ts RsA = R
s
B = t1=2.

3.2. The deregulated market

In what follows, we 3rst characterize the outcome of all symmetric and asymmetric
location con3gurations. As to the latter we con3ne attention to very large values of K .
More precisely, we focus on values of K in the neighborhood of K = 1 so that only
very few consumers prefer nighttime shopping. 11 Subsequently, we turn to the study
of equilibrium con3gurations.

3.2.1. Symmetric location con1gurations
Following deregulation two more symmetric con3gurations may arise. First, if a2 =

b2 = I both retailers open for 24 hours. As no consumer incurs a disutility in the time
dimension the latter drops out on both sides of (1) and demand functions coincide with
those under regulation. Second, if a2 = b2 = I both retailers open during the nighttime
interval. This con3guration is the mirror image of the case under regulation. We thus
have the following result.

Proposition 2. The outcome of any symmetric location con1guration a2 = b2 where
both shops are open is unique and coincides with the one under regulation.

The intuition is straightforward. Under symmetry outlets open during the same time
interval and product variants are perceived as homogeneous with respect to time. As a
consequence, retailers’ demands coincide for any symmetric con3guration. Equilibrium
prices only reNect competition along the geographical dimension.

3.2.2. Asymmetric location con1gurations
Our focus on a neighborhood of K = 1 implies that only those asymmetric con3g-

urations constitute a reasonable candidate for an asymmetric location equilibrium that
involve one retailer to open around the clock and the other to open during the daytime.
Keeping in mind that there are two such con3gurations let A be the retailer that opens
around the clock, i.e. consider the con3guration with a2= I and b2= QI . In what follows
we derive the corresponding demand functions and prove the existence of a unique
price equilibrium. By symmetry these results hold for the case a2 = QI and b2 = I , too.

10 The equilibrium outcome of our original setup is obtained by simple doubling of Ds
i and R

s
i . Equilibrium

prices are una.ected since the marginal conditions remain the same. This reasoning applies to all equilibrium
outcomes derived below.
11 A motivation for this analytical strategy is given below.
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Fig. 3. Case 1 (left) and Case 2 (right).

Demand: Consumers with a preference for nighttime shopping (z2¿ 1
2 ) appreciate

the additional hours of business o.ered by A: Intuitively, these consumers may want
to bene3t from the advantage to incur zero disutility in the time dimension when
purchasing at A even at the expense of higher transportation costs: At a given pair
of prices, A’s demand will therefore rise. This materializes in a shift of the marginal
consumer location in this market segment as (2) now becomes pA+ t1z1 =pB+ t1(1−
z1) + t2(z2 − 1

2 ), yielding the marginal consumer location

ẑ2(pA; pB; z1) := min
{
1;max

{
1
2
;
pA − pB − t1 + t2=2

t2
+

2t1
t2
z1

}}
: (3)

The additional option to shop at A during the nighttime interval does not a.ect the
decision where to shop of those consumers with a preference for daytime shopping.
The location of the marginal consumer in this market segment is therefore una.ected.
As a consequence, the boundary between the demand for A and B is ẑ1 of (2) for
z26 1

2 and ẑ2 of (3) for z2¿ 1
2 . How does this modi3cation a.ect the functional form

of demand? Our focus on the neighborhood of K = 1 allows to restrict attention to
pairs of prices for which pA − pB6 t1. If this condition does not hold then ẑ1 = 0
and retailer A serves only consumers located on z2¿ 1

2 . Intuitively, such a price setting
behavior is not optimal when only very few consumers have a preference for nighttime
shopping.
Fig. 3 illustrates the two cases that may arise. They di.er as in Case 1 (pA; pB; t1; t2)

is such that the marginal consumer segment ẑ2(:) and the z2 = 1 locus intersect to the
left of or at the upper right corner whereas in Case 2 ẑ2(:) intersects the z1 = 1 locus
below that corner.
Case 1: Suppose that pA − pB¿ t2=2− t1. Then the demands of both retailers are
DA = ẑ1(pA; pB) + (1 − K) t2

8t1
and DB = 1 − DA: (4)

Compared to the symmetric con3guration A attracts more consumers at a given pair
of prices. Indeed, it is easy to see that t2=8t1 is the surface of the shaded triangle in
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Fig. 3. It contains those consumers for which it is now advantageous to buy at A in
spite of higher transport cost. The corresponding mass is (1 − K)t2=8t1.

Case 2: Let prices satisfy t2=2 − t1¿pA − pB¿− t1. Then, a simple geometrical
argument shows that

DB=K(1− ẑ1(pA; pB))+ (1−K)(1− ẑ1(pA;pB))2 2t1t2 and DA = 1−DB: (5)

Clearly, DB is a weighted average of those consumers located on z26 1
2 and z2¿ 1

2 .
Price Equilibrium: The following proposition characterizes the unique price

equilibrium.

Proposition 3. Suppose a2 = I and b2 = QI and that K is su?ciently close to one. Then
we have a unique price equilibrium (p∗

A; p
∗
B).

If t26 2t1, Case 1 applies and

p∗
A = t1 +

(1 − K)t2
12

and p∗
B = t1 − (1 − K)t2

12
: (6)

If t2¿ 2t1, Case 2 applies and

p∗
A = 2t1

1 − K(1 − ẑ1) − 2(1 − K)(1 − ẑ1)2t1=t2
K + 4(1 − K)(1 − ẑ1)t1=t2 ; (7)

p∗
B = 2t1(1 − ẑ1) K + 2(1 − K)(1 − ẑ1)t1=t2

K + 4(1 − K)(1 − ẑ1)t1=t2 : (8)

Proof. See Appendix.

To understand Proposition 3 consider K=1, i.e. all consumers have a preference for
daytime shopping and to open beyond QI does not attract additional demand. Accord-
ingly, (6)–(8) coincide with the unique equilibrium prices of the symmetric con3gu-
rations (ps

A; p
s
B). Proposition 3 claims that a unique price equilibrium also exists in a

neighborhood of (ps
A; p

s
B).

The equilibrium relates to either Cases 1 or 2 depending on the parameters t1 and
t2. Case 2 applies if consumers’ preference intensity for time is relatively strong, i.e.
if t2=t1 is su1ciently high. To see this observe that for K close to 1, p∗

A and p∗
B of

Proposition 3 are almost identical. Setting t2¿ 2t1 and pA = pB in (3) we see that
ẑ2(:) intersects the z1 = 1 locus below the upper right corner of the unit square. This
is precisely the “de3nition” of Case 2.
Observe also that for K = 1 product variants appear to be only di.erentiated with

respect to space. With K ¡ 1 some consumers prefer nighttime shopping. To the latter,
product variants appear di.erentiated with respect to time and space. Accordingly, t1
and t2 show up in the equilibrium prices of Proposition 3.
Before turning to the derivation of equilibrium locations, it is in order to comment

brieNy on our focus on high values of K . For Case 2, we were not able to determine
an explicit solution for equilibrium prices. Such problems are well known to arise in
models of multi-dimensional product di.erentiation (see, e.g. Neven and Thisse, 1990,
p. 185). Typically, the literature addresses them using either numerical methods or by
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considering only limit cases where, in our setting, either t2=t1 → 0 or t1=t2 → 0 (see,
e.g., Gilbert and Matutes, 1993). Our approach is based on the computation of the
unique price equilibrium for K = 1 that is independent of whether (and how many)
retailers open at night. Then, we use total derivatives to identify the 3rst order e.ects on
prices and pro3ts when K changes at K=1. This allows for clear-cut predictions about
when prices and payo.s are higher or lower in an asymmetric con3guration compared
to the symmetric one, at least for K close to 1. As our stylized model is not meant to
mirror a particular retail market, but mainly serves to isolate and discuss causal e.ects,
we think that this method is well suited to approach a well-known problem.

3.2.3. First-stage equilibrium
Following deregulation, shops can open at times that are more convenient for some

consumers. If one shop does not use this opportunity, it is easy to see that in the
absence of shift costs the other shop strictly prefers to do so and opens around the
clock. The question is whether such asymmetric con3guration can be bene3cial for
both retailers relative to a symmetric one.
Suppose A opens around the clock and B sticks to daytime opening hours. This

con3guration puts B at a locational disadvantage as the resulting equilibrium demands
satisfy D∗

B ¡
1
2 ¡D∗

A (This is shown in the proof of Proposition 4). Consequently,
this strategy is B’s best reply only if the ensuing equilibrium price p∗

B is su1ciently
higher than under symmetric locations thus compensates for the loss in demand. Our
main result is that this is indeed the case if consumers’ preference intensity for time
is su1ciently strong. To develop the intuition it is convenient to state the following
structural property of our model.

Lemma 1. Let demands be given by (4) or (5). Then, for any price equilibrium and
K ¡ 1 it holds that p∗

A ¿p∗
B if and only if D

∗
A ¿D∗

B.

Proof. Let (p∗
A; p

∗
B) be a price equilibrium. Then both prices satisfy

p∗
A =

−D∗
A

@D∗
A

@pA

and p∗
B =

−D∗
B

@D∗
B

@pB

: (9)

From @ẑ1(:)=@pA = (−@ẑ1(:)=@pB) and DA(ẑ1(pA;pB); :), DB(1 − ẑ1(pA;pB); :) we infer
@DA=@pA = @DB=@pB = −@DA=@pB = −@DB=@pA. Hence, p∗

A ¿p∗
B holds if and only if

D∗
A ¿D∗

B.

Reconsider the con3guration a2 = I and b2 = QI with D∗
B ¡

1
2 ¡D∗

A if K ¡ 1. From
(9) we see that a rise in p∗

B above ps
B requires demand to become less responsive

to price changes. In Case 1 this is impossible as the responsiveness of demand to
price changes is the same as in the symmetric case (from (4) we have @DA=@pA =
@DB=@pB = −1=(2t1)). Thus, D∗

B ¡
1
2 must imply p∗

B ¡ps
B. In Case 2, however, the

responsiveness of demand depends on the con3guration. In fact, as we show next we
have −@DB=@pB|pB=p∗

B
¡ 1=(2t1) if t2 is su1ciently large.
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The essential di.erence between the repsonsiveness of demand in the two cases is as
follows. Consider, for instance, a price decrease by B. In Case 1 a lower price attracts
a new slice of customers across all time preferences. In contrast, in Case 2 a price
decrease does not induce customers with a strong preference for nighttime shopping to
patronize B. In short, as t2 increases, outlets that marginally adjust their prices compete
for a smaller segment of the market. 12 For large values of K Lemma 2 gives a formal
statement of this intuition.

Lemma 2. Suppose a2 = I and b2 = QI . Then dp∗
A=dK |K=1¡ 0, while dp∗

B=dK |K=1¡ 0
holds if and only if t2=t1¿ 5

2 .

Proof. See Appendix.

Lemma 2 provides a local comparison of equilibrium prices associated with sym-
metric con3gurations and the asymmetric con3guration a2= I , b2= QI . Here, we use that
equilibrium prices for symmetric con3gurations are independent of K and that equilib-
rium prices under both con3gurations coincide at K=1. The local comparison between
the two con3gurations can then be made using the derivatives with respect to K .
As D∗

B ¡
1
2 we conclude from Lemma 2 that retailer B is strictly worse of if it does

not open for 24 hours and t2 is relatively small. In fact, t2=t1¿ 5
2 is a necessary con-

dition to make the retailer prefer to open only at daytime. As this strategy reduces the
retailer’s demand compared to the symmetric con3guration, this condition is, however,
not su1cient.
Relying on the same technical device as Lemma 2, Lemma 3 has a su1cient

condition.

Lemma 3. Suppose a2=I and b2= QI . Then dR∗
A=dK |K=1¡0, while dR∗

B=dK |K=1¡ 0
holds if and only if t2=t1¿ 4.

Proof. See Appendix.

As conjectured, the condition t2¿ 4t1 in Lemma 3 is strictly stronger than the con-
dition t2=t1¿ 5

2 of Lemma 2. Consumers’ preference intensity for convenient shopping
hours must become su1ciently strong to ensure that also retailer B is strictly better o.
after deregulation in spite of its locational disadvantage. To increase pro3ts of retailer
B, its equilibrium price must rise su1ciently with a decrease in K to compensate for
the loss in demand. Formally, this reasoning has an interpretation in terms of “direct
demand” and “strategic” e.ects, too. Applying the envelope theorem to R∗

B, we obtain

dR∗
B

dK

∣∣∣∣
K=1

= p∗
B

[
@D∗

B

@K

∣∣∣∣
K=1

+
@D∗

B

@p∗
A

∣∣∣∣
K=1

dp∗
A

dK

∣∣∣∣
K=1

]
: (10)

12 Though the formal derivation of this result depends on the considered space, we feel that the underlying
argument is quite robust. Just imagine that the two 3rms are located somewhere on an island. As the time
dimension becomes su1ciently important, all customers with a high preference for nighttime shopping will
shop at A if pA − pB is not too large.
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This is negative if the direct demand e.ect

@D∗
B

@K

∣∣∣∣
K=1

=
1
2

[
1 − t1

t2

]
¿ 0

is overcompensated by the strategic e.ect

@D∗
B

@p∗
A

∣∣∣∣
K=1

dp∗
A

dK

∣∣∣∣
K=1

=
(

1
2t1

)
4t1
3

[
7t1
4t2

− 1
]
¡ 0:

Hence, the condition t2¿ 4t1 ensures that A’s price rises su1ciently.
We are now in the position to derive the equilibrium opening hours after deregula-

tion.

Proposition 4. If K is su?ciently close to 1, equilibrium opening hours are as
follows:

(i) If t2=t1¿ 4 there exist exactly two location equilibria where either a2 = I , b2 = QI
or a2 = QI ; b2 = I ; equilibrium prices of both retailers are strictly higher than
before deregulation.

(ii) If t2=t1¡ 4 the unique location equilibrium is a2 = b2 = I ; deregulation does not
aAect prices.

Proof. See Appendix.

The key to this equilibrium structure lies in Lemma 3. Starting from a location
con3guration under regulation with a2 = b2 = QI , it is optimal for one retailer, say A,
to open all day if the other retailer chooses not to do so. Then B’s best reply depends
on whether t2=t1¿ 4 is satis3ed or not. If consumers’ preference intensity for time
is relatively low B loses in any asymmetric con3guration and will therefore mimic
retailer A’s move. The equilibrium is symmetric with a2 =b2 = I and prices and pro3ts
before and after deregulation coincide. If t2=t1¿ 4, also B gains from an asymmetric
con3guration and therefore opens only during the day. 13

Two remarks concerning case (i) are in order. First, case (i) exhibits multiple (asym-
metric) equilibria. This problem could be solved by a sequential game where nature
decides who moves 3rst. It is then not di1cult to show that the 3rst mover chooses
to open up around the clock and has strictly higher pro3ts if K ¡ 1.
Second, case (i) gives rise to equilibria in mixed strategies. 14 Denote by � the

probability of retailer B to open around the clock. If both retailers open around the
clock or only during daytime, we know that their pro3ts are Rsi . For a2 = I , b2 = QI
denote equilibrium pro3ts of A and B by R∗

A and R∗
B, respectively. Symmetry implies

13 So far we considered only con3gurations where both shops open at daytime. It might be argued that
retailers should choose non-overlapping opening hours to achieve maximal di.erentiation, in particular for
high values of t2=t1. We can prove that this is not optimal given the concentration of preferences on the
daytime segment.
14 We like to thank a referee for suggesting this.
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that A earns R∗
B if a2 = QI and b2 = I . Then, retailer A is indi.erent between a2 = I and

a2 = QI if � satis3es

�RsA + (1 − �)R∗
A = �R

∗
B + (1 − �)RsA;

or

�=
R∗
A − RsA

R∗
A + R

∗
B − 2RsA

: (11)

Using symmetry, retailer A must randomize with the same probability � to keep B
indi.erent. Focussing on the neighborhood of K = 1 both the numerator and the
denominator of (11) tend to zero as K → 1. An application of l’Hôpital’s rule gives

�=
1

1 + [(dR∗
B=dK)=(dR

∗
A=dK)]|K=1

:

Proposition 5. If K is su?ciently close to one and t2=t1¿ 4 there exists also an equi-
librium in mixed strategies, where both retailers randomize between opening around
the clock and opening only at daytime. As K → 1, the symmetric probability for
opening around the clock converges to

�∗ =
1
6
5(t2=t1) − 8
(t2=t1) − 2

: (12)

Proof. Immediate from the proofs of Lemma 3 and Proposition 4.

Proposition 5 provides additional insights into the role of the ratio t2=t1. Clearly, for
t2 → 4t1 it holds that �∗ → 1. Moreover, di.erentiating (11) with respect to (t2=t1)
shows that �∗ strictly decreases with this ratio. Hence, the probability for a given
retailer to open around the clock and, thus, the probability of both retailers to open
around the clock strictly decreases in t2=t1. Intuitively, the higher t2=t1, the more relaxed
is price competition if retailers choose an asymmetric location con3guration. In other
words, if t2=t1 is high, the coordination failure when both shops open for 24 hours
becomes increasingly costly.
A limitation of our model is that we allow only for a discrete choice of opening

hours. Having a continuous choice of opening hours proved analytically intractable, one
reason being that quasi-concavity of pro3t functions could no longer be guaranteed. We
conjecture, however, that our main insights remain valid in such an extended context.
The argument is as follows. Suppose that, besides opening during the day, a retailer
could continuously choose for how long to open during the night. If one retailer opens
around the clock we know for high K and t2=t1¿ 4 that the other retailer is strictly
better o. by opening only during daytime instead of opening for 24 hours, too. This
result is independent of whether retailers choose between day- and nighttime shifts
or whether their choice is continuous. While it may no longer hold that the other
retailer opens only during the day, we know that it does not 3nd it optimal to open
for 24 hours.
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4. The case of di!ering input costs

Let retailers di.er with respect to their constant marginal input costs of serving
consumers. To simplify, normalize retailer A’s costs to zero and set B’s equal to c.
Assume that A’s cost advantage is not too big, i.e. 06 c¡ t1=2. This excludes equilibria
in which outlet A prices B out of the market. How are our main 3ndings of Proposition
5 a.ected? 15

Proposition 6. If K is su?ciently close to 1 equilibrium opening hours are as
follows:

(i) If t2¿ (36t21 − 4c2)=(9t1 − 9c) there exist exactly two location equilibria where
either a2 = I , b2 = QI or a2 = QI , b2 = I .

(ii) If (36t21 − 4c2)=(9t1 − 9c)¿t2¿ (36t21 − 4c2)=(9t1 +9c) the unique location equi-
librium is a2 = I , b2 = QI .

(iii) If t2¡ (36t21 − 4c2)=(9t1 + 9c) the unique location equilibrium is a2 = b2 = I .

Proof. See Appendix.

To build intuition it is instructive to consider the outcome for K=1 with equilibrium
prices ps

A=t1+c=3 and ps
B=t1+2c=3. The horizontal position of the indi.erent consumer

location is given by Qz := 1
2 + c=(6t1). Hence, the “address” of indi.erent consumers

for K = 1 shifts to the right as c¿ 0. If A opens around the clock and K ¡ 1 this
shift makes it easier for A to capture all consumers with su1ciently high preferences
for nighttime shopping. From our previous arguments this is essential to ensure that
B’s equilibrium price is higher when it opens only during daytime. The further Qz
shifts to the right, the “shorter” becomes the marginal consumer segment. Thus, the
responsiveness of demand falls and price competition is relaxed. As a consequence, the
condition for a2 = I , b2 = QI to be an equilibrium under di.ering input costs is relaxed
compared to Proposition 4. More generally, the threshold t2¿ (36t21 − 4c2)=(9c + 9t1)
strictly decreases in c reaching t2¿ 4t1 for c = 0.
By the same token, the condition for a2 = QI , b2 = I to be an equilibrium is now

stricter than the one for the equilibrium with a2 = I , b2 = QI . Again, this follows as
Qz¿ 1

2 holds for c¿ 0, implying that the marginal consumer segment is “longer” than
under symmetric con3gurations. Thus, if t2=t1 takes on intermediate values there is a
unique equilibrium where only A opens around the clock.
Despite the multiplicity of equilibria for high values of t2=t1, it is fair to say that

retailers with a cost advantage are more likely to open around the clock. Associating
the cost advantage with shop size this result is consistent with the observation in Halk
and Tr@ager (1999) that large stores are more likely to use the leeway in the deregulated
market.

15 A more detailed discussion and all proofs for the case of di.ering input costs can be found in Inderst
and Irmen (2001).
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5. Concluding remarks

This paper demonstrates that a short-run implication of a deregulation of shopping
hours may be higher prices. This result obtains in an asymmetric equilibrium con3gu-
ration where one shop opens longer than the other.
The model and the technical analysis were devised to study the strategic aspects of

deregulating shopping hours under imperfect competition and to highlight the impact
on shops’ prices and pro1ts. We have therefore abstained from discussing welfare.
Admittedly, an assessment of the short-term welfare e.ects of deregulation would have
to say something about aggregate demand e.ects and costs components which depend
on opening hours. Aggregate demand may well change after deregulation, either in
response to price changes or because more Nexible shopping hours and/or a reduc-
tion of congestion attracts more consumers. Yet, our model of product di.erentiation
does not allow for such e.ects. As to the second point, it is clear that the desirabil-
ity of deregulation may be weakened if longer opening hours come at an additional
cost.
While we leave the incorporation of these phenomena for future research 16 it nev-

ertheless seems worthwhile to state that our model allows at least for some tentative
welfare conclusions. For instance, if both 3rms incur identical marginal costs one can
show that deregulation increases welfare for K su1ciently high. This is immediate when
deregulation leads to a symmetric equilibrium where both shops open around the clock.
Here prices and the marginal consumer location remain constant while “transportation”
costs of the time dimension are reduced for nighttime shoppers. If deregulation leads to
an asymmetric equilibrium the marginal consumer location shifts. Even though physi-
cal transportation costs increase after regulation, a marginal analysis at K = 1 shows
that this e.ect is dominated by the reduction in “transportation” costs associated with
the time dimension. However, in an asymmetric equilibrium welfare could be further
increased if both 3rms chose to open around the clock.
When retailers’ input costs di.er an additional e.ect must be taken into account. In

an asymmetric equilibrium the retailer who opens around the clock attracts a larger
demand than in the symmetric case (under regulation). If it is the low-cost retailer,
who opens around the clock the additional e.ect increases welfare as aggregate trans-
portation costs decrease. If it is the high-cost retailer, who opens longer (in the case of
multiple equilibria), this additional e.ect reduces welfare and no clear-cut predictions
are available.
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Appendix. Proofs

Proof of Proposition 3. The proof proceeds in a series of claims.

Claim 1. Consider pj 1xed. Then Ri(pj; ·) is strictly quasiconcave and continuously
diAerentiable for all pj− t16pi6pj+ t1. Moreover, any equilibrium (p∗

A; p
∗
B) where

Ri(p∗
A; p

∗
B)¿ 0 for i = A; B and p∗

A − p∗
B ¡ t1 must satisfy either the 1rst-order con-

ditions of Case 1 or those of Case 2.

Proof. We discuss Cases 1 and 2 in turn. For Case 1 we obtain from (4) the derivatives

@Ri
@pi

=
t1 + pj − 2pi + (1 − K)t2=4

2t1
; (13)

which yield the 3rst-order conditions in (6) and establish that Ri is strictly concave in
pi. From (5) we obtain for Case 2 the derivatives

@Di
@pi

= −K + 4(1 − K)t1(1 − ẑ1)=t2
2t1

and

@RA
@pA

= Kẑ1 + (1 − K) − (1 − K)(1 − ẑ1)2 2t1t2 − K + 4(1 − K)t1(1 − ẑ1)=t2
2t1

pA;

@RB
@pB

= K(1 − ẑ1) + (1 − K)(1 − ẑ1)2 2t1t2 − K + 4(1 − K)t1(1 − ẑ1)=t2
2t1

pB:

The 3rst-order conditions give rise to the equilibrium prices of (7) and (8). Observe
next that @2DA=@p2

A = −(1 − K)=(t1t2) such that

@2RA
@p2

A
= 2

@DA
@pA

+
@2DA
@p2

A
pA¡ 0:

Regarding RB in Case 2, we obtain that @2RB=@p2
B 7 0 holds i.

− 2[Kt2 + 2(1 − K)(t1 − pB + pA)] + (1 − K)pB 7 0: (14)

Recall now that we only consider values pB satisfying (i) pB¿ QpB := max{pA −
t1; pA+ t1 − t2=2} and (i) pB6 QQpB := pA+ t1, where RB(pA; pB)¿ 0 over this interval
and RB(pA; QQpB) = 0. Note next that, as the left-hand side in (14) is strictly increasing
in pB, there exist at most two values pB at which @RB=@pB changes sign. If there is no
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such value, RB(pA; ·) must be strictly decreasing and therefore strictly quasiconcave.
Likewise, if there is only one such value, RB(pA; ·) must 3rst strictly increase and
then strictly decrease, making it again strictly quasiconcave. It remains to rule out the
case where exactly two values pB exist at which @RB=@pB changes sign. To argue
to a contradiction, denote the respective values by QpB¡p1

B ¡p2
B ¡ QQpB. By the sign

of RB(pA; ·) it must hold that @2RB=@p2
B|pB=p1

B
¿ 0 and @2RB=@p2

B|pB=p2
B
¡ 0, which

contradicts (14). Hence, the strict quasiconcavity of Ri, i = A; B, is established.
Finally, observe that di.erentiability is only an issue at the boundary between the two

cases, i.e. where pA−pB= t2=2− t1. At this point it holds that ẑ1(pA; pB)=1− t2=(4t1).
(Observe that we can restrict consideration to the case where 0¡ 1− t2=(4t1)¡ 1.) It
is then easily checked that Ri is in fact smooth at this boundary.

An immediate implication of Claim 1 is that there exists for each retailer a unique
best response if prices are restricted accordingly.

Claim 2. There exists at most one equilibrium (p∗
A; p

∗
B) where p

∗
A − p∗

B ¡ t1 and
Ri(p∗

A; p
∗
B)¿ 0.

Proof. Given the restriction on prices, (p∗
A; p

∗
B) must by Claim 1 solve the 3rst-order

conditions of either Cases 1 or 2. In Case 1 we obtain by inspection of (13) a sin-
gle equilibrium candidate. Consider next Case 2 and denote D′ = @Di=@pi. As RA is
strictly concave (over the considered domain), implicit di.erentiation of the 3rst-order
condition yields

dpB
dpA

= 1 − D′

−D′ + [(1 − K)=t1t2]pA ; (15)

where we use that @2DA=(@pB@pA)=(1−K)=(t1t2). Similarly, using strict quasiconcavity
for RB, we obtain from the 3rst-order condition of B

dpB
dpA

= 1 − D′

2D′ + [(1 − K)=t1t2]BpB
: (16)

Consider a possible pair (p∗
A; p

∗
B), where the best-response functions for Case 2 in-

tersect. As we are now only considering interior solutions, the second-order condition
for B must be satis3ed, which yields the requirement 2D′ + [(1−K)=t1t2]p∗

B ¡ 0. This
implies D′=(2D′ + [(1−K)=t1t2]p∗

B)¿ 0, while D′=(−D′ + [(1−K)=t1t2]p∗
A)¡ 0, such

that (15) ¿ (16). As this must hold at any intersection, the best-response functions
for Case 2 may intersect at most once.
Having shown that there can be at most one equilibrium where prices solve the

3rst-order conditions of either Cases 1 or 2, it remains to prove that these two equilib-
rium candidates are mutually exclusive. Recall 3rst that for an equilibrium in
Case 2 the slope dpB=dpA of the best-response function of A strictly exceeds that
of the best-response function of B. We can now show that the same holds for Case 1,
which by Claim 1 proves the assertion. To see this, note that implicit di.erentiation of
the best-response function of A in Case 1 yields dpB=dpA =2, while implicit di.eren-
tiation of the best-response function of B in Case 1 yields dpB=dpA = 1

2 .
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Claim 3. If t26 2t1, then we can 1nd QK such that for QK ¡K¡ 1 there exists a
unique price equilibrium with prices given by (6).

Proof. We derive 3rst conditions for existence. By Claim 1, there exists a unique pair
of prices satisfying the 3rst-order conditions of Case 1. Calculation reveals that these
prices satisfy p∗

A − p∗
B = (1 − K)t2=6 such that by assumption the conditions of Case

1 are satis3ed.
We show next that no 3rm can pro3tably deviate. By Claim 1, there is no pro3table

deviation as long as prices satisfy the conditions of Case 1 or 2. It thus remains to
consider su1ciently high prices pA and su1ciently low prices pB such that ẑ1 = 0.
Regarding 3rm A, to ensure DA¿ 0 the deviating price pA must be bounded from above
by pB+ t1 + t2=2, which implies that the deviation cannot be pro3table if QK1¡K6 1
for some QK1¡ 1. Regarding 3rm B, observe 3rst that RB(p∗

A; p
∗
B) is continuous in K

(for high K). By o.ering some pB6p∗
A − t1, B’s revenue is bounded from above by

(1 − K)t2=12, which converges to zero as K → 1. As RB(p∗
A; p

∗
B)¿ 0, the deviation

is not pro3table for QK2¡K6 1 and some QK2¡ 1. Hence, we have proved existence
for K ¿max{ QK1; QK2}.
We turn next to uniqueness. By Claim 2 there exists no other equilibrium where

p∗
A − p∗

B ¡ t1 and Ri(p∗
A; p

∗
B)¿ 0. It thus remains to cover the case where the price

di.erence is larger than t1. As K → 1 this can be ruled out by standard arguments.
Choosing thus K su1ciently large we can ensure that Claim 3 holds.

Claim 4. If t2¿ 2t1, then we can 1nd QK such that for QK ¡K¡ 1there exists a unique
price equilibrium with prices given by (7) and (8).

Proof. The argument is omitted as it is analogous to that of Claim 3.

Proof of Lemma 2. By Proposition 2, we can 3nd for a given value of t2=t1 a neighbor-
hood of K = 1 such that there exist a unique price equilibrium which is characterized
by the 3rst-order conditions of either Case 1 or 2. Suppose 3rst that t26 2t1, i.e.
Case 1 applies. We obtain dp∗

A=dK |K=1 = −t2=12 and dp∗
B=dK |K=1 = t2=12. Consider

next the case where t2¿ 2t1 such that Case 2 applies. Implicit di.erentiation of the
3rst-order conditions (7) and (8) yields

dp∗
A

dK

∣∣∣∣
K=1

= 2t1

[
dẑ1
dK

∣∣∣∣
K=1

− 1 +
2t1
t2

(
1 − 1

2

)2
]
;

dp∗
B

dK

∣∣∣∣
K=1

= 2t1

[
− dẑ1

dK

∣∣∣∣
K=1

+
2t1
t2

(
1 − 1

2

)2
]
;

where we substituted ẑ1|K=1 = 1
2 . By the de3nition of ẑ1, we further obtain

dẑ1
dK

=
1
2t1

(
−dp∗

A

dK
+

dp∗
B

dK

)
;
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which yields dẑ1=dK |K=1 = (1 − t1=t2)=3. Hence, we 3nally obtain

dp∗
A

dK

∣∣∣∣
K=1

=
2t1
3

[
−2 +

t1
t2

7
2

]
; (17)

dp∗
B

dK

∣∣∣∣
K=1

=
2t1
3

[
−1 +

t1
t2

5
2

]
: (18)

Using for (17) that t2¿ 2t1 proves dp∗
A=dK |K=1¡ 0, while the condition for dp∗

B=
dK |K=1 follows from (18).

Proof of Lemma 3. Suppose 3rst that Case 1 applies (in a neighborhood of K = 1),
which by Proposition 3 holds for t26 2t1. Given the explicit characterization of equi-
librium prices in (6), it is easily established that dR∗

A=dK |K=1¡ 0 and dR∗
B=dK |K=1¿ 0.

Consider next Case 2. By the envelope theorem we obtain

dR∗
B

dK

∣∣∣∣
K=1

= p∗
B

[
@D∗

B

@K

∣∣∣∣
K=1

+
@D∗

B

@p∗
A

∣∣∣∣
K=1

dp∗
A

dK

∣∣∣∣
K=1

]
: (19)

Using (5) and (17), we obtain

@D∗
B

@K

∣∣∣∣
K=1

=
1
2

− t1
2t2
;

@D∗
B

@p∗
A

∣∣∣∣
K=1

dp∗
A

dK

∣∣∣∣
K=1

= −
(

− 1
2t1

)
2t1
3

[
7t1
2t2

− 2
]
:

Substitution yields dR∗
B=dK |K=1 = 2

3 t1=t2 − 1
6 , which yields the condition in Lemma 3.

Likewise, we obtain dR∗
A=dK |K=1= 4

3 t1=t2− 5
6 , which is strictly negative as t2¿ 2t1.

Proof of Proposition 4. We already considered all location con3gurations where both
3rms open during the daytime. It thus remains to show that (i) retailers do not want
to deviate from the characterized strategies by closing during daytime and (ii) that
retailer would wish to deviate from a con3guration where they are supposed to close
during daytime. At K =1 it is intuitive that a retailer opening only at nighttime would
be strictly better o. by deviating to opening also at daytime, regardless of the opening
hours of the competitor. This extends to all su1ciently high values of K . We omit
a proof of this claims, which is contained in our discussion paper Inderst and Irmen
(2001).
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