Analysis of Markets with Vertical Integration

Roman Inderst, University of Frankfurt and Imperial Tommaso Valletti, Imperial and University of Rome II

October 2008

Motivation

Two separate research projects:

Motivation

Two separate research projects:

- Incentives for input foreclosure
 - -> Current interest: Non-horizontal guidelines.

Motivation

Two separate research projects:

- *Incentives* for input foreclosure
 - -> Current interest: Non-horizontal guidelines.
- Assessment of market power in input markets: Direct vs. Indirect constraints

-> Current interest: i) Schneider/Legrand and ii) Regulation of Electronic Communication (broadband)

Modelling? Bilateral Contracting Framework?

• "Deep" but useless for these questions (of input foreclosure and indirect constraints)!

Bilateral Contracting Framework?

- "Deep" but useless for these questions (of input foreclosure and indirect constraints)!
- Non-observable contracts: Extreme opportunism problem without integration.
 - -> Non-integrated supplier is his own worst competitor!
 - -> Irrelevance of upstream market structure ("direct constraints").
 - -> Irrelevance of "indirect constraints".

Bilateral Contracting Framework?

- "Deep" but useless for these questions (of input foreclosure and indirect constraints)!
- Non-observable contracts: Extreme opportunism problem without integration.
 - -> Non-integrated supplier is his own worst competitor!
 - -> Irrelevance of upstream market structure ("direct constraints").
 - -> Irrelevance of "indirect constraints".

• Observable contracts:

- Serious "non-existence" problems in case of downstream "multi-homing".
- Single-homing: "Dominant" supplier monopolizes downstream market.

Alternative: Market Interface

• We take here an "eclectic approach": Namely

Alternative: Market Interface

- We take here an "eclectic approach": Namely
 - For study of "indirect constraints"
 - -> "Two-stage Cournot" model (a la Salinger 1988)
 - -> Despite the conceptual criticism!
 - For study of "incentives to foreclose" need a novel, richer model
 - -> Two-stage price setting game with imperfect substitutes upstream

Incentives to Foreclose

- Extant approaches:
 - Upstream Cournot: Salinger (1988)
 - -> Conceptual criticism
 - -> More important: Not sufficiently rich to support theories of incentives to foreclose
 - Ordover, Saloner, and Salop (1990): Upstream price competition, "very particular" timing.

Incentives to Foreclose

- Extant approaches:
 - Upstream Cournot: Salinger (1988)
 - -> Conceptual criticism

-> More important: Not sufficiently rich to support theories of incentives to foreclose

- Ordover, Saloner, and Salop (1990): Upstream price competition, "very particular" timing.
- Our approach:
 - Simple two-stage price competition: No conceptual problems.
 - Differentiated upstream products (akin to demand theory)

"Standard" quantity competition approach overstates incentives to foreclose
 -> Intuition: "Replacement effect" under price competition.

- "Standard" quantity competition approach overstates incentives to foreclose
 -> Intuition: "Replacement effect" under price competition.
- Corollary: Price vs. quantity competition upstream
 - Price competition -> Lower US, higher DS margin.
 - But: Less incentives to foreclose.

• More detailed analysis of the *informativeness* of pre-merger margins.

- More detailed analysis of the *informativeness* of pre-merger margins.
- Varying *downstream* market characteristics: More competition as
 -> Less differentiation
 - -> Bertrand vs. Cournot

- More detailed analysis of the *informativeness* of pre-merger margins.
- Varying *downstream* market characteristics: More competition as
 - -> Less differentiation
 - -> Bertrand vs. Cournot
 - implies
 - Higher upstream, lower downstream margins.
 - But: (1) Higher impact ("pass-through") and (2) higher benefit of downstream cost advantage.

- More detailed analysis of the *informativeness* of pre-merger margins.
- Varying *downstream* market characteristics: More competition as
 - -> Less differentiation
 - -> Bertrand vs. Cournot

implies

- Higher upstream, lower downstream margins.
- But: (1) Higher impact ("pass-through") and (2) higher benefit of downstream cost advantage.
- Trade-off! With linear demand second effect stronger
 -> Higher US / lower DS margins imply higher incentives to foreclose

- Varying *upstream* market characteristics
 - Costs of rivals up -> Higher US / lower DS margins. Less incentives!
 Intuitive: Only "level effects" at work!

- Varying *upstream* market characteristics
 - Costs of rivals up -> Higher US / lower DS margins. Less incentives!
 Intuitive: Only "level effects" at work!
 - Opposite if change between Cournot and Bertrand
 Intuition: "Replacement effect".

- Varying *upstream* market characteristics
 - Costs of rivals up -> Higher US / lower DS margins. Less incentives!
 Intuitive: Only "level effects" at work!
 - Opposite if change between Cournot and Bertrand
 Intuition: "Replacement effect".
- In sum:
 - Focus on levels of pre-merger margins insufficient!
 -> Ignores role of price impact ("pass-through").

- Varying *upstream* market characteristics
 - Costs of rivals up -> Higher US / lower DS margins. Less incentives!
 Intuitive: Only "level effects" at work!
 - Opposite if change between Cournot and Bertrand
 Intuition: "Replacement effect".
- In sum:
 - Focus on *levels* of pre-merger margins insufficient!
 -> Ignores role of price impact ("pass-through").
 - 2. No robust relationship between margins and incentives −> Ask: Why are margins high/low in the first place?

Production

- $m \in M = \{1, ..., M\}$ different inputs; $n \in N := \{1, ..., N\}$ final goods.
- Simplification: One-to-one production
 - -> Good $n: q_n := \sum_{m \in M} q_n^m$
 - -> Input $m: q^m := \sum_{n \in N} q_n^m$

Production

- $m \in M = \{1, ..., M\}$ different inputs; $n \in N := \{1, ..., N\}$ final goods.
- Simplification: One-to-one production
 - -> Good $n: q_n := \sum_{m \in M} q_n^m$ -> Input $m: q^m := \sum_{n \in N} q_n^m$
- Cost of production for *n*:

$$C(q_n) := \min_{\substack{q_n^m \ge 0 \text{ s.t. } \sum_{m \in M} q_n^m = q_n}} \left\{ \sum_{m=1,\dots,M} \left[\delta(q_n^m)^2 / 2 + q_n^m (p^m + \beta) \right] \right\}$$

- $-> \beta \ge 0$ represents constant marginal cost;
- $->\delta>0$ represents a measure of input differentiation

$$q_n^m - q_n^{m'} = \frac{1}{\delta} \left(p^{m'} - p^m \right)$$

Production: Adjustment

For meaningful comparative analysis in N (number of products):

• DS productive "capacity" K > 0: k := K/N.

Production: Adjustment

For meaningful comparative analysis in N (number of products):

- DS productive "capacity" K > 0: k := K/N. Kept fix.
 - -> Total production costs stay constant as only N changes.

Production: Adjustment

For meaningful comparative analysis in N (number of products):

- DS productive "capacity" K > 0: k := K/N.
- DS productive "capacity" K > 0: k := K/N. Kept fix.
 -> Total production costs stay constant as only N changes.
- We obtain with $\overline{p}_{\emptyset} := \sum_{m \in M} p^m / M$ and $\widehat{\delta} := \delta / K$

$$C'_k(q_n) = \overline{p}_{\varnothing} + \beta + \widehat{\delta} \frac{N}{M} q_n.$$

• Likewise, if only M-1 inputs used: With $\overline{p}'_{\varnothing} := \sum_{m=2,...,M} p^m / (M-1)$

$$C'_k(q_n) = \overline{p}'_{\varnothing} + \beta + \widehat{\delta} \frac{N}{M-1} q_n.$$

General Procedure: Incentives to Foreclose

- Specification:
 - One DS firm owns n = 1, ..., f products. (Here: capacity)
 - Input m = 1 provided strategically. Input m = 2 competitively.

General Procedure: Incentives to Foreclose

- Specification:
 - One DS firm owns n = 1, ..., f products. (Here: capacity)
 - Input m = 1 provided strategically. Input m = 2 competitively.
- Pre-merger: (1) Obtain "derived demand"; (2) Solve upstream.

General Procedure: Incentives to Foreclose

- Specification:
 - One DS firm owns n = 1, ..., f products. (Here: capacity)
 - Input m = 1 provided strategically. Input m = 2 competitively.
- Pre-merger: (1) Obtain "derived demand"; (2) Solve upstream.
- Vertical integration of n = m = 1: Incentives to still participate?
 - -> Suppose not: Solve for equilibrium.
 - -> Back out p^1 where $q^1 = 0$.
 - -> VI-firm's profit impact from marginal reduction in p^1 ?

Downstream Homogeneous Cournot

Obtain some general insights:

- No "full foreclosure" even as upstream margin goes to zero as
 - $c^{m=2} = \overline{c}$ becomes equal to $c^{m=1}$ (which is normalized to zero);
 - δ (differentiation) goes to zero.
- Role of "pass through" rate: High -> Higher incentives to foreclose.

DS Linear Demand

• Levitan and Shubik (1980):

$$q_n = \frac{1}{N} \left[1 - p_n - \theta \left(p_n - \frac{\sum_{n' \in N} p_{n'}}{N} \right) \right]$$

DS Linear Demand

• Levitan and Shubik (1980):

$$q_n = \frac{1}{N} \left[1 - p_n - \theta \left(p_n - \frac{\sum_{n' \in N} p_{n'}}{N} \right) \right]$$

• Cournot DS: Never full foreclosure

-> Effect of US price competition (instead of quantity competition)

DS Linear Demand

• Levitan and Shubik (1980):

$$q_n = \frac{1}{N} \left[1 - p_n - \theta \left(p_n - \frac{\sum_{n' \in N} p_{n'}}{N} \right) \right]$$

• Cournot DS: Never full foreclosure

-> Effect of US price competition (instead of quantity competition!

• Bertrand: Never full foreclosure when θ low; but when $\theta \rightarrow 0$, then if

$$rac{f}{N} > 2rac{\mathbf{1}+\widehat{\delta}}{\mathbf{4}+\widehat{\delta}}.$$

i.e., if (i) high pre-merger market share f/N; (ii) low upstream differentiation $\hat{\delta}$.

Incentives for (Full) Foreclosure

- Thus, when comparing [Bertrand vs. Cournot] or $[\theta \rightarrow 0 \text{ vs. } \theta \rightarrow \infty]$: As there is more DS competition, then
 - -> Higher US, lower DS margin
 - -> Full foreclosure "more likely"

Incentives for (Full) Foreclosure

- Thus, when comparing [Bertrand vs. Cournot] or $[\theta \rightarrow 0 \text{ vs. } \theta \rightarrow \infty]$: As there is more DS competition, then
 - -> Higher US, lower DS margin
 - -> Full foreclosure "more likely"
- Variation in US competition:
 - US Bertrand vs. Cournot: Same relationship.
 - -> Dominating "replacement/pass-through" effect.

Incentives for (Full) Foreclosure

- Thus, when comparing [Bertrand vs. Cournot] or $[\theta \rightarrow 0 \text{ vs. } \theta \rightarrow \infty]$: As there is more DS competition, then
 - -> Higher US, lower DS margin
 - -> Full foreclosure "more likely"
- Variation in US competition:
 - US Bertrand vs. Cournot: Same relationship.
 - -> Dominating "replacement/pass-through" effect.
 - Cost disadvantage of rivals $\overline{c} > 0$: Only level effects!
 - -> Opposite relationship!

Summary: Incentives to Foreclose

- 1. Focus on *levels* of pre-merger margins misleading
 - -> Ignores role of price impact ("pass-through")
 - -> Maybe high precisely when US margin high and DS margin low
- 2. No robust relationship between margins and incentives
 - -> Only when one asks: Why are margins high/low in the first place?

Direct vs. Indirect Constraints

- Recall: We use here standard "two-stage Cournot" setting. And:
 - Constant marginal cost of production US and DS.
 - US: M > 2 suppliers compete.
- Focus on merchant market: Quantity \overline{q} and price \overline{p} .

Questions

- Strength of direct vs. indirect constraints?
 - Direct: Through supplies to the merchant market.
 - Indirect: Through vertically integrated firm's DS operations.

Questions

- Strength of direct vs. indirect constraints?
 - Direct: Through supplies to the merchant market.
 - Indirect: Through vertically integrated firm's DS operations.
- Assessing market power on the wholesale/merchant market:
 - Market definition and market share analysis.
 - Use of other "readily available" information.

Strength of Indirect Constraints

- Hypothetical exercise: Compare outcomes on merchant market
 - –> Quantity \overline{q} and price \overline{p}
 - before vertical integration;
 - after vertical integration.
- Differences? After n = m = 1 integration with only "captive sales"
 - weaker direct constraints $(M \rightarrow M 1)$;
 - additional indirect constraints.

Formal Trade-Off

• With homogeneous goods (and upstream conjectural variations):

$$L_{VI} := \frac{\overline{p}_{VI} - \overline{c}}{\overline{p}_{VI}} = \left(\frac{1}{M - 1}\right) \left(\frac{1}{\overline{\varepsilon}_{VI}}\right) (1 + \lambda)$$

compared to

$$L_{NVI} := \frac{\overline{p}_{NVI} - \overline{c}}{\overline{p}_{NVI}} = \left(\frac{1}{M}\right) \left(\frac{1}{\overline{\varepsilon}_{NVI}}\right) (1 + \lambda).$$

Formal Trade-Off

• With homogeneous goods (and upstream conjectural variations):

$$L_{VI} := \frac{\overline{p}_{VI} - \overline{c}}{\overline{p}_{VI}} = \left(\frac{1}{M-1}\right) \left(\frac{1}{\overline{\varepsilon}_{VI}}\right) (1+\lambda)$$

compared to

$$L_{NVI} := \frac{\overline{p}_{NVI} - \overline{c}}{\overline{p}_{NVI}} = \left(\frac{1}{M}\right) \left(\frac{1}{\overline{\varepsilon}_{NVI}}\right) (1 + \lambda).$$

• Why does VI increase elasticity?

-> "Responsiveness" $|d\overline{q}/d\overline{p}|$ larger as VI firm not affected.

Linear Demand

Indirect constraints are "strong" (lower \overline{q}) if

- Downstream products are relatively undifferentiated -> High competition! (Schneider / Legrand ?)
- Upstream competition is weak.

Include Captive Sales in Market Shares?

Starting point: M -> M - 1, gives rise to mechanic increase in market shares
 -> Include "captive sales"?

Include Captive Sales in Market Shares?

- Starting point: M -> M 1, gives rise to mechanic increase in market shares
 -> Include "captive sales"?
- But not necessarily more informative
 - -> E.g., low share of merging independent suppliers could mean
 - strong indirect constraints (e.g., low differentiation parameter),
 - or weak direct constraints (e.g., high conj. variations λ).

Include Captive Sales in Market Shares?

- Starting point: M -> M 1, gives rise to mechanic increase in market shares
 -> Include "captive sales"?
- But not necessarily more informative
 - -> E.g., low share of merging independent suppliers could mean
 - strong indirect constraints (e.g., low differentiation parameter),
 - or weak direct constraints (e.g., high conj. variations λ).
- In addition: Risk of "double counting".

-> Information on DS substitution already fully incorporates indirect constraints!

Further Insights from Formal Analysis (1)

• Warning against too mechanic use of "readily available" information.

Further Insights from Formal Analysis (1)

- Warning against too mechanic use of "readily available" information.
- Eg. (inverse) "dilution factor" $\delta = \overline{p}/p$. Without VI, decomposition of elasticity

$$\varepsilon^{US} = \varepsilon^{DS} \cdot \delta \cdot \tau.$$

-> But this does NOT mean: Low δ -> Low ε^{US} -> High mark-up.

Further Insights from Formal Analysis (1)

- Warning against too mechanic use of "readily available" information.
- Eg. (inverse) "dilution factor" $\delta = \overline{p}/p$. Without VI, decomposition of elasticity

$$\varepsilon^{US} = \varepsilon^{DS} \cdot \delta \cdot \tau.$$

-> But this does NOT mean: Low δ -> Low ε^{US} -> High mark-up.

• Key: All parameters are exogenous. Simple example: Strong upstream competition generates low δ !

Summary: Direct vs. Indirect Constraints

- 1. Indirect constraints are not necessarily "weak".
- 2. Indirect constraints are relatively stronger when, e.g.,
 - DS market is more competitive,
 - US market is less competitive.
- 3. Can only advocate very cautious use of
 - inclusion of "captive sales";
 - use of other "readily available" information.

We hope that our "short project" bears fruit in that:

1. The "new" modelling approach proves also practically relevant.

We hope that our "short project" bears fruit in that:

- 1. The "new" modelling approach proves also practically relevant.
- 2. Results help to sharpen theories on "incentives for (full) foreclosure" (and possibly influence policy work, e.g., UK's new guidelines)

We hope that our "short project" bears fruit in that:

- 1. The "new" modelling approach proves also practically relevant.
- 2. Results help to sharpen theories on "incentives for (full) foreclosure" (and possibly influence policy work, e.g., UK's new guidelines)
- 3. Results guide practitioners' thinking on the role of "indirect constraints".

We hope that our "short project" bears fruit in that:

- 1. The "new" modelling approach proves also practically relevant.
- 2. Results help to sharpen theories on "incentives for (full) foreclosure" (and possibly influence policy work, e.g., UK's new guidelines)
- 3. Results guide practitioners' thinking on the role of "indirect constraints".

Thank you!